次の計算をしよう!
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} \colMM{orange}{{}_{n}{\rm P}_{n} = } & \colMM{orange}{\dfrac{n\,!}{(n-n)\,!}\ が成り立つように}\\ \\ 0! &= 1 \colMM{orange}{ と定めました。}\\ \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
1\,! = 1
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\valN{2} \def\siki{ \cdot 1} \def\kotae{2} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} & \colMM{orange}{ \valN\ から\ 1まで}\\ \colNS{lightgray}{{}_{\valN}{\rm P}_{\valN}=}\colBX{bisque}{$\valN$}\,! &= \colBX{bisque}{$\valN$}\siki\\ &= \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\valN{3} \def\siki{\cdot 2 \cdot 1} \def\kotae{6} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} & \colMM{orange}{ \valN\ から\ 1まで}\\ \colNS{lightgray}{{}_{\valN}{\rm P}_{\valN}=}\colBX{bisque}{$\valN$}\,! &= \colBX{bisque}{$\valN$}\siki\\ &= \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\valN{4} \def\siki{\cdot 3 \cdot 2 \cdot 1} \def\kotae{24} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} & \colMM{orange}{ \valN\ から\ 1まで}\\ \colNS{lightgray}{{}_{\valN}{\rm P}_{\valN}=}\colBX{bisque}{$\valN$}\,! &= \colBX{bisque}{$\valN$}\siki\\ &= \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\valN{5} \def\siki{\cdot 4 \cdot 3 \cdot 2 \cdot 1} \def\kotae{120} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} & \colMM{orange}{ \valN\ から\ 1まで}\\ \colNS{lightgray}{{}_{\valN}{\rm P}_{\valN}=}\colBX{bisque}{$\valN$}\,! &= \colBX{bisque}{$\valN$}\siki\\ &= \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\valN{6} \def\siki{\cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \def\kotae{720} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} & \colMM{orange}{ \valN\ から\ 1まで}\\ \colNS{lightgray}{{}_{\valN}{\rm P}_{\valN}=}\colBX{bisque}{$\valN$}\,! &= \colBX{bisque}{$\valN$}\siki\\ &= \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan