- 2次方程式 ax^2+bx+c=0の2つの解を \alpha,\ \beta とすれば,解と係数の関係より
\alpha + \beta = \dfrac{b}{a} \times (-1), \alpha\beta = \dfrac{c}{a}
となります。このとき,\alpha+\beta,\alpha\beta は対称式になっています。しかも一番ベースとなる 基本対称式 です。
- この世界に存在するすべての対称式は 基本対称式 のみで表すことができます。これを利用して,\alpha,\beta の対称式を求めていきます。数学1で扱った対称式と考え方は同じです。
↓この問題へのリンクはこちら(右クリックで保存)
2次方程式 x^2-4x+5=0 の2つの解を \alpha,\ \beta とするとき,次の式の値を求めよ。
【解答】
\def\va{1}\def\vbf{}\def\vb{-4}\def\vcf{+}\def\vc{5} \def\wa{4} \def\seki{5} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} \colFB{red}{Check!} & \\ & \colMM{orange}{\bf 先頭 }\colMM{green}{\bf 真ん中 }\colMM{magenta}{\bf 最後}\\ & \colBX{bisque}{\va}x^2\vbf\colBX{palegreen}{$\vb$}x\vcf\colBX{violet}{$\vc$} = 0\\ \\ \colFB{red}{解答} & \\ 2次方 & 程式\ \va{x^2}\vbf\vb{x}\vcf\vc=0\ の\\ &2つの解を \alpha,\ \beta\ とすると\\ \\ \colFB{pink}{和} & \alpha + \beta =\dfrac{\colBX{palegreen}{$\vb$}}{\colBX{bisque}{\va}} \times (-1) = \wa\\ \\ \colFB{pink}{積} & \alpha\beta =\dfrac{\colBX{violet}{$\vc$}}{\colBX{bisque}{\va}} = \seki\\ \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{}\def\wa{4}\def\wrightk{} \def\sleftk{\cdot}\def\seki{5}\def\srightk{} \def\wz{16} \def\ns{-10} \def\kotae{6} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ \alpha^2 + \beta^2 & = (\colBX{bisque}{$\alpha+\beta$})^2-2\colBX{palegreen}{$\alpha\beta$}\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^2-2 \sleftk\colBX{palegreen}{$\seki$}\srightk\\ \\ &= \wz\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{}\def\wa{4}\def\wrightk{} \def\sleftk{\cdot}\def\seki{5}\def\srightk{} \def\ws{64} \def\ns{-60} \def\kotae{4} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ \alpha^3 + \beta^3 & = (\colBX{bisque}{$\alpha+\beta$})^3-3\colBX{palegreen}{$\alpha\beta$}(\colBX{bisque}{$\alpha+\beta$})\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^3-3 \sleftk\colBX{palegreen}{$\seki$}\srightk \cdot\wleftk\colBX{bisque}{$\wa$}\wrightk\\ \\ &= \ws\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{}\def\wa{4}\def\wrightk{} \def\sleftk{\cdot}\def\seki{5}\def\srightk{} \def\wz{16} \def\ns{-20} \def\kotae{-4} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ (\alpha - \beta)^2 &= \alpha^2-2\alpha\beta+\beta^2\\ \\ &= \colBX{mistyrose}{$\alpha^2+\beta^2$} -2\alpha\beta\\ \\ &= \colBX{mistyrose}{$(\alpha+\beta)^2-2\alpha\beta$} -2\alpha\beta\\ \\ &= (\colBX{bisque}{$\alpha+\beta$})^2-4\colBX{palegreen}{$\alpha\beta$}\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^2-4 \sleftk\colBX{palegreen}{$\seki$}\srightk\\ \\ &= \wz\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
2乗してるのにマイナス?
\alpha - \beta が純虚数だから!↓この問題へのリンクはこちら(右クリックで保存)
2次方程式 x^2+3x-1=0 の2つの解を \alpha,\ \beta とするとき,次の式の値を求めよ。
【解答】
\def\va{1}\def\vbf{+}\def\vb{3}\def\vcf{}\def\vc{-1} \def\wa{-3} \def\seki{-1} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} \colFB{red}{Check!} & \\ & \colMM{orange}{\bf 先頭 }\colMM{green}{\bf 真ん中 }\colMM{magenta}{\bf 最後}\\ & \colBX{bisque}{\va}x^2\vbf\colBX{palegreen}{$\vb$}x\vcf\colBX{violet}{$\vc$} = 0\\ \\ \colFB{red}{解答} & \\ 2次方 & 程式\ \va{x^2}\vbf\vb{x}\vcf\vc=0\ の\\ &2つの解を \alpha,\ \beta\ とすると\\ \\ \colFB{pink}{和} & \alpha + \beta =\dfrac{\colBX{palegreen}{$\vb$}}{\colBX{bisque}{\va}} \times (-1) = \wa\\ \\ \colFB{pink}{積} & \alpha\beta =\dfrac{\colBX{violet}{$\vc$}}{\colBX{bisque}{\va}} = \seki\\ \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{(}\def\wa{-3}\def\wrightk{)} \def\sleftk{(}\def\seki{-1}\def\srightk{)} \def\wz{9} \def\ns{+2} \def\kotae{11} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ \alpha^2 + \beta^2 & = (\colBX{bisque}{$\alpha+\beta$})^2-2\colBX{palegreen}{$\alpha\beta$}\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^2-2 \sleftk\colBX{palegreen}{$\seki$}\srightk\\ \\ &= \wz\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{(}\def\wa{-3}\def\wrightk{)} \def\sleftk{(}\def\seki{-1}\def\srightk{)} \def\ws{-27} \def\ns{-9} \def\kotae{-36} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ \alpha^3 + \beta^3 & = (\colBX{bisque}{$\alpha+\beta$})^3-3\colBX{palegreen}{$\alpha\beta$}(\colBX{bisque}{$\alpha+\beta$})\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^3-3 \sleftk\colBX{palegreen}{$\seki$}\srightk \cdot\wleftk\colBX{bisque}{$\wa$}\wrightk\\ \\ &= \ws\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
【解答】
\def\wleftk{(}\def\wa{-3}\def\wrightk{)} \def\sleftk{(}\def\seki{-1}\def\srightk{)} \def\wz{9} \def\ns{+4} \def\kotae{13} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \newcommand\colFB[2]{\textcolor{#1}{\fbox{\scriptsize\bf\color{#1}#2}}} \begin{align*} 解と係数の関係 & から\\ \alpha + \beta = \colBX{bisque}{$\wa$},\ & \alpha\beta = \colBX{palegreen}{$\seki$}\\ \\ (\alpha - \beta)^2 &= \alpha^2-2\alpha\beta+\beta^2\\ \\ &= \colBX{mistyrose}{$\alpha^2+\beta^2$} -2\alpha\beta\\ \\ &= \colBX{mistyrose}{$(\alpha+\beta)^2-2\alpha\beta$} -2\alpha\beta\\ \\ &= (\colBX{bisque}{$\alpha+\beta$})^2-4\colBX{palegreen}{$\alpha\beta$}\\ \\ &= \wleftk\colBX{bisque}{$\wa$}\wrightk^2-4 \sleftk\colBX{palegreen}{$\seki$}\srightk\\ \\ &= \wz\ns = \kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan