次の2次方程式を解いてみよう。
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sx{12} \def\Kotae{2\sqrt{3}} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} x^2 &= -\sx\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\sx}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\sx}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sx{4} \def\Kotae{2} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} x^2 &= -\sx\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\sx}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\sx}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sx{1} \def\Kotae{1} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} x^2 + \sx &= 0\\ \\ x^2 &= -\sx\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\sx}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\sx}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sbs{1} \def\sbb{4} \def\Kotae{\dfrac12} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} \sbb x^2 + \sbs &= 0\\ \sbb x^2 &= -\sbs\\ x^2 &= -\dfrac{\sbs}{\sbb}\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\dfrac{\sbs}{\sbb}}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\dfrac{\sbs}{\sbb}}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sx{18} \def\Kotae{3\sqrt{2}} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} x^2 &= -\sx\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\sx}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\sx}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sx{16} \def\Kotae{4} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} x^2 + \sx &= 0\\ \\ x^2 &= -\sx\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\sx}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\sx}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\sbs{9} \def\sbb{4} \def\Kotae{\dfrac32} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} \sbb x^2 + \sbs &= 0\\ \sbb x^2 &= -\sbs\\ x^2 &= -\dfrac{\sbs}{\sbb}\\ \colMM{orange}{2乗とる} & \colMM{orange}{\Darr \Darr\pm\sqrt{ }}\\ x &= \pm\sqrt{\colBX{mistyrose}{$-$}\dfrac{\sbs}{\sbb}}\\ & \colMM{red}{\sqrt{マイナス}は \Darr 外へ}\\ &= \pm\sqrt{\dfrac{\sbs}{\sbb}}\,\colBX{mistyrose}{$i$}\\ \\ &= \pm\Kotae\,i \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan