分母が同じ分数式の加法と減法は分子のみ計算しよう

分母が同じ分数式の加法と減法

次の式を計算しよう

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{3x}
\def\BunsiB{x}
\def\BunsiC{4x}
\def\Bunbo{x+2}

\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を足す!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
&= \dfrac{\BunsiC}{\Bunbo}
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{3x+2}
\def\BunsiB{x-2}
\def\BunsiC{2x+4}
\def\Bunbo{x+2}

\def\Kotae{2}

\def\BunsiD{2\colBX{lightcyan}{$(x+2)$}}
\def\BunboD{\colBX{lightcyan}{$x+2$}}
\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
&= \dfrac{\BunsiC}{\Bunbo}\\
&   \colMM{red}{\Darr かけ算に分解(因数分解)} \\
&= \dfrac{\BunsiD}{\BunboD}\\
\\
&= \Kotae
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{x}
\def\BunsiB{2}
\def\BunsiC{x+2}
\def\Bunbo{x-1}

\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を足す!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
%&= \dfrac{\BunsiC}{\Bunbo}
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{2x}
\def\BunsiB{x+9}
\def\BunsiC{3x+9}
\def\Bunbo{x+3}

\def\BunsiD{3\colBX{lightcyan}{$(x+3)$}}
\def\BunboD{\colBX{lightcyan}{$x+3$}}

\def\Kotae{3}

\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を足す!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
&= \dfrac{\BunsiC}{\Bunbo}\\
&   \colMM{red}{\Darr かけ算に分解(因数分解)} \\
&= \dfrac{\BunsiD}{\BunboD}\\
\\
&= \Kotae
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{3x+1}
\def\BunsiB{2x-3}
\def\BunsiC{x+4}
\def\Bunbo{x-2}

\def\Kotae{2}

\def\BunsiD{2\colBX{lightcyan}{$(x+2)$}}
\def\BunboD{\colBX{lightcyan}{$x+2$}}
\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
&= \dfrac{\BunsiC}{\Bunbo}\\
%&   \colMM{red}{\Darr かけ算に分解(因数分解)} \\
%&= \dfrac{\BunsiD}{\BunboD}\\
%\\
%&= \Kotae
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

この問題へのリンクはこちら(右クリックで保存)

【解答】

\def\BunsiA{2x^2}
\def\BunsiB{x+1}
\def\BunsiC{2x^2-x-1}
\def\Bunbo{x-1}

\def\Kotae{2x+1}

\def\BunsiD{(2x+1)\colBX{lightcyan}{$(x-1)$}}
\def\BunboD{\colBX{lightcyan}{$x-1$}}

\newcommand\colNS[2]{\color{#1}#2\color{black}}
\newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}}
\newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}}
\newcommand\colBX[2]{\colorbox{#1}{#2}}
\newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}}
\begin{align*}
&  \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\
\dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}
&= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\
\colMM{red}{分母が同じ!}   \\
&= \dfrac{\BunsiC}{\Bunbo}\\
&   \colMM{red}{\Darr かけ算に分解(因数分解)} \\
&= \dfrac{\BunsiD}{\BunboD}\\
\\
&= \Kotae
\end{align*}
%1 orange,bisque
%2 green,palegreen
%3 magenta, violet
%4 deepskyblue, lightcyan

「ますどら」新着コンテンツ

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です