次の式を計算しよう
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{3x} \def\BunsiB{x} \def\BunsiC{4x} \def\Bunbo{x+2} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を足す!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ &= \dfrac{\BunsiC}{\Bunbo} \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{3x+2} \def\BunsiB{x-2} \def\BunsiC{2x+4} \def\Bunbo{x+2} \def\Kotae{2} \def\BunsiD{2\colBX{lightcyan}{$(x+2)$}} \def\BunboD{\colBX{lightcyan}{$x+2$}} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ &= \dfrac{\BunsiC}{\Bunbo}\\ & \colMM{red}{\Darr かけ算に分解(因数分解)} \\ &= \dfrac{\BunsiD}{\BunboD}\\ \\ &= \Kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x} \def\BunsiB{2} \def\BunsiC{x+2} \def\Bunbo{x-1} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を足す!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ %&= \dfrac{\BunsiC}{\Bunbo} \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{2x} \def\BunsiB{x+9} \def\BunsiC{3x+9} \def\Bunbo{x+3} \def\BunsiD{3\colBX{lightcyan}{$(x+3)$}} \def\BunboD{\colBX{lightcyan}{$x+3$}} \def\Kotae{3} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を足す!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} + \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}+\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ &= \dfrac{\BunsiC}{\Bunbo}\\ & \colMM{red}{\Darr かけ算に分解(因数分解)} \\ &= \dfrac{\BunsiD}{\BunboD}\\ \\ &= \Kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{3x+1} \def\BunsiB{2x-3} \def\BunsiC{x+4} \def\Bunbo{x-2} \def\Kotae{2} \def\BunsiD{2\colBX{lightcyan}{$(x+2)$}} \def\BunboD{\colBX{lightcyan}{$x+2$}} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ &= \dfrac{\BunsiC}{\Bunbo}\\ %& \colMM{red}{\Darr かけ算に分解(因数分解)} \\ %&= \dfrac{\BunsiD}{\BunboD}\\ %\\ %&= \Kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{2x^2} \def\BunsiB{x+1} \def\BunsiC{2x^2-x-1} \def\Bunbo{x-1} \def\Kotae{2x+1} \def\BunsiD{(2x+1)\colBX{lightcyan}{$(x-1)$}} \def\BunboD{\colBX{lightcyan}{$x-1$}} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow 分子を引く! \swarrow (かっこ)必要!}\\ \dfrac{\colBX{palegreen}{$\BunsiA$}}{\colBX{mistyrose}{$\Bunbo$}} - \dfrac{\colBX{violet}{$\BunsiB$}}{\colBX{mistyrose}{$\Bunbo$}} &= \dfrac{\colBX{palegreen}{$\BunsiA$}-(\colBX{violet}{$\BunsiB$})}{\colBX{mistyrose}{$\Bunbo$}}\\ \colMM{red}{分母が同じ!} \\ &= \dfrac{\BunsiC}{\Bunbo}\\ & \colMM{red}{\Darr かけ算に分解(因数分解)} \\ &= \dfrac{\BunsiD}{\BunboD}\\ \\ &= \Kotae \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan