次の式を計算しよう
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x^2-x} \def\BunboA{x+1} \def\BunsiB{2} \def\BunboB{x-1} \def\BunsiC{x\colBX{mistyrose}{$(x-1)$}} \def\BunboC{x+1} \def\BunsiD{2} \def\BunboD{\colBX{mistyrose}{$x-1$}} \def\BunsiK{2x} \def\BunboK{x+1} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \times \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \times \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiK}{\BunboK} \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x^2+x} \def\BunboA{x+2} \def\BunsiB{x+1} \def\BunboB{x^2-4} \def\BunsiC{x(x+1)} \def\BunboC{x+2} \def\BunsiD{x+1} \def\BunboD{(x+2)(x-2)} \def\BunsiE{x \colBX{mistyrose}{$(x+1)$}} \def\BunboE{\colBX{palegreen}{$x+2$}} \def\BunsiF{\colBX{palegreen}{$(x+2)$}(x-2)} \def\BunboF{\colBX{mistyrose}{$x+1$}} \def\BunsiG{x(x-2)} \def\BunboG{1} \def\BunsiK{\BunsiG} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \div \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \div \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 逆数にして掛ける}\\ &= \dfrac{\BunsiE}{\BunboE} \times \dfrac{\BunsiF}{\BunboF}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiG}{\BunboG}\\ \\ &= \BunsiK \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x^2-4} \def\BunboA{x^2-3x} \def\BunsiB{x} \def\BunboB{x+2} \def\BunsiC{\colBX{mistyrose}{$(x+2)$}(x-2)} \def\BunboC{\colBX{palegreen}{$x$}(x-3)} \def\BunsiD{\colBX{palegreen}{$x$}} \def\BunboD{\colBX{mistyrose}{$x+2$}} \def\BunsiK{x-2} \def\BunboK{x-3} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \times \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \times \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiK}{\BunboK} \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{2x} \def\BunboA{2x+1} \def\BunsiB{2x^2-3x-2} \def\BunboB{x-2} \def\BunsiC{2x} \def\BunboC{\colBX{mistyrose}{$2x+1$}} \def\BunsiD{\colBX{mistyrose}{$(2x+1)$}\colBX{palegreen}{$(x-2)$}} \def\BunboD{\colBX{palegreen}{$x-2$}} \def\BunsiK{2x} \def\BunboK{1} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \times \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \times \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiK}{\BunboK} = \BunsiK \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x-2} \def\BunboA{x^2+3x} \def\BunsiB{x^2-3x} \def\BunboB{x^2-9} \def\BunsiC{x-2} \def\BunboC{x(x+3)} \def\BunsiD{x(x-3)} \def\BunboD{(x+3)(x-3)} \def\BunsiE{x-2} \def\BunboE{x \colBX{mistyrose}{$(x+3)$}} \def\BunsiF{\colBX{mistyrose}{$(x+3)$}\colBX{palegreen}{$(x-3)$}} \def\BunboF{x\colBX{palegreen}{$(x-3)$}} \def\BunsiG{x-2} \def\BunboG{x^2} \def\BunsiK{\BunsiG} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \div \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \div \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 逆数にして掛ける}\\ &= \dfrac{\BunsiE}{\BunboE} \times \dfrac{\BunsiF}{\BunboF}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiG}{\BunboG}%\\ %\\ %&= \BunsiK \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x^2-x} \def\BunboA{x-3} \def\BunsiB{x^2+5x} \def\BunboB{x^2+2x-15} \def\BunsiC{x(x-1)} \def\BunboC{x-3} \def\BunsiD{x(x+5)} \def\BunboD{(x-3)(x+5)} \def\BunsiE{\colBX{mistyrose}{$x$}(x-1)} \def\BunboE{\colBX{palegreen}{$x-3$}} \def\BunsiF{\colBX{palegreen}{$(x-3)$}\colBX{violet}{$(x+5)$}} \def\BunboF{\colBX{mistyrose}{$x$}\colBX{violet}{$(x+5)$}} \def\BunsiG{x-1} \def\BunboG{1} \def\BunsiK{\BunsiG} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \div \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \div \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 逆数にして掛ける}\\ &= \dfrac{\BunsiE}{\BunboE} \times \dfrac{\BunsiF}{\BunboF}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiG}{\BunboG}\\ \\ &= \BunsiK \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan
↓この問題へのリンクはこちら(右クリックで保存)
【解答】
\def\BunsiA{x^2-2x} \def\BunboA{x-3} \def\BunsiB{x^2+5x} \def\BunboB{x^2+2x-15} \def\BunsiC{x(x-2)} \def\BunboC{x-3} \def\BunsiD{x(x+5)} \def\BunboD{(x-3)(x+5)} \def\BunsiE{\colBX{mistyrose}{$x$}(x-2)} \def\BunboE{\colBX{palegreen}{$x-3$}} \def\BunsiF{\colBX{palegreen}{$(x-3)$}\colBX{violet}{$(x+5)$}} \def\BunboF{\colBX{mistyrose}{$x$}\colBX{violet}{$(x+5)$}} \def\BunsiG{x-2} \def\BunboG{1} \def\BunsiK{\BunsiG} \newcommand\colNS[2]{\color{#1}#2\color{black}} \newcommand\colUL[2]{\textcolor{#1}{\underline{\color{black}#2}}} \newcommand\colMM[2]{\color{#1}\scriptsize\bf\bm #2\color{black}} \newcommand\colBX[2]{\colorbox{#1}{#2}} \newcommand\colFR[2]{\textcolor{#1}{\fbox{\color{black}#2}}} \begin{align*} & \colMM{red}{\Rightarrow かけ算に分解(因数分解)}\\ \dfrac{\BunsiA}{\BunboA} \div \dfrac{\BunsiB}{\BunboB} &= \dfrac{\BunsiC}{\BunboC} \div \dfrac{\BunsiD}{\BunboD}\\ & \colMM{red}{\Darr 逆数にして掛ける}\\ &= \dfrac{\BunsiE}{\BunboE} \times \dfrac{\BunsiF}{\BunboF}\\ & \colMM{red}{\Darr 約分}\\ &= \dfrac{\BunsiG}{\BunboG}\\ \\ &= \BunsiK \end{align*} %1 orange,bisque %2 green,palegreen %3 magenta, violet %4 deepskyblue, lightcyan